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The matrix of force constants of a symmetric molecule is reduced to its in- 
variants (nearly diagonal form). For the case of distance dependent potentials 
these invariants are expressed by the derivations of the potentials and geo- 
metric factors. For the purpose of parametrization the inversions of these 
formulae are derived. The general equilibrium condition and the elimination 
of the translational and rotational coordinates are discussed, The example of 
the tetrahedral AB 4 structure is worked out. 
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I. Introduction 

As a further application of the SALC coefficients proposed in I [1] we want to 
attack a problem connected with symmetry coordinates. In doing so we shall 
use the mathematics worked out in II [2]. Our notations refer to this paper and 
the closely related example IlI [3] of the molecular overlap matrix. The problem 
is as follows: In a molecule AmB,C p. .. with symmetry group G there are given 
distance dependent potentials ~b([Ai--Bkl ). For sake of generality we allow 
different potentials for symmetrically inequivalent edge vectors St=Ai-B~: 
q~(S, IAi-Bkl ). It is clear from the first that the normal vibration frequencies in 
harmonic approximation will depend on the first and second derivatives of the 
potential only. We want to derive an explicit formula for the force constants with 
respect to symmetry coordinates as functions of these derivatives. The force 
constants will still form matrices with non-diagonal elements if there is more than 
one coordinate of one symmetry species. But the remaining diagonalization 
depends on the masses of the atoms A, B, etc. and cannot be achieved by group 
algebraic methods. 
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2. General Potentials 

For the first step to our aim it is not necessary to restrict the molecular potential 
in any way. We therefore start with an arbitrary potential V(A~, A~ . . . . .  B~, 
B2, . . . ) ,  where the vectors A~' etc. mean the actual nonequilibrium position and 
A~ the equilibrium. Thus the deviations are 

~A~=AI-A ~ (I) 

For the partial differential operator with reference to component AAi,, of vector 
AA~ we write: 

V(Aim) = ~/OAA* m (2) 

The component indices refer to the complex basis of the spherical harmonics 
[lm). The formal complication of using complex coordinates has, of course, no 
consequences for our final results, but conforms to the definition of the gradient 
operator in the algebra of spherical harmonics [4]. The Cartesian force constants 
then are: 

F(Aim, Bkn) = V(Aim)V(Bkn) V/Aa,= 0 etc. (3) 

Since the elongations AA~ belong to the angular momentum quantum number 
l= 1, according to Eq. (20) of II the symmetry coordinates Q of symmetry species 
e (component p) are given by 

Q(Tep, Aa~g)= ~ M(7ep, Aiac~, (d)lm). AAim (4) 
im 

Here we have omitted the multiplicity index fl, because with the exception of the 
very low symmetries C 2, Cs, and Czh the representations resulting from l= 1 by 
subduction are different from each other. So we can save space and fl may be 
supplemented afterwards, if necessary. The symmetry coordinates of the same 
species are distinguished according to the equivalent atomic set A, the irreducible 
representations ~ and ~, which occur in the reduction of a A and l= 1, and by the 
multiplicity indices c~ of ~ in a A and 7 of c in ~ x ~. The techniques of I and II 
allow the numerical calculation of the coefficients M for arbitrary structures via 
tabulated quantities without projection operators. But the algebraic formulae 
Eqs. (21), (15) oflI  or Eq. (7) oflII  moreover permit the tensor algebraic evaluation 
of the symmetry force constants leading to expressions which do neither depend 
on the chosen coordinates nor on the numeration of the equivalent atoms. Thus 
there is no need to know the numerical values of (4). 

The differential operators of the symmetry coordinates are 

V(Q, 7ep, A ~ ) =  3/OQ(7~p, Ac~cd)* = ~ [~AA~,,/OQ(Tcp, A c ~ ) ] .  V(Aim) 
i m  

and with the inversion of (4)" 

V(Q, 7ep, A c ~ ) =  ~ M(7~p, Aic~c~, (fl)lm). V(Aim) (5) 
i m  
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The matrix of  the symmetry invariant force constants then is 

F(e, 7Ac~d, 7'Bc(dd') = V(Q, 7ep, Aead)*V(Q, 7%p, B~'d~')V/all Q=0 (6) 

The connection between the two force constant matrices is because of  (5) : 

F(c, 7A~d, 7 'B~'a,'d')= 
M(7cp, Aic~a~, (d)lm)*m(7'ep, Bkc~'~', (d')ln)F(Aim, Bkn) (7) 

iknm 

and by inversion: 

F(Aim, Bkn)= (8) 

~ ~ M(vep, A&~, (d)lm)M(7'cp, Bkc(d, (d')ln)*F(e, 7Ac~d, 7'B~'~'d') 

This is in accordance with Eqs. (5) and (6) of III. For the numerical calculation of 
the invariants one again must calculate an equal number of elements F(dim, Bkn) 
and then use (8). For the derivation of an explicit formula from (7) one needs more 
information on the potential. 

3. The Distance Dependent Potential 

As already mentioned in the introduction the potential between A i' and B E is 
supposed to be ~P(S, fAi-B/d), if A[-BI=S ~ or IA,-B I;s. This condition 
can be formalized by the triangular matrices defined in Eq. (37) of II. Since 
-Ai+Bk+S,= O, the potential of  A i -Bk  is 

cb(S, IA{-Bs ~'Tr Z(-ABT)I/2"c( - A k Tr )qJ(T' ]T~I) 

and the total potential of  the molecule: 

V(A;, a i . . . . .  B~, B;, . . .) 

s~o rcp uq \ P q F /I 

The essential of Eq. (9) is the enumeration of the potentials not by the position 
vectors, but by the sets S of  equivalent edge vectors. Only this sum of physical 
interest will survive till the final formulae. 

The first derivatives are: 

(2::) V(ekn)V= - (1 /2 )  ~ ~ Z( -  CBS)I/2z V(Srn)~b(S, [S,'I) (10) 
S~:O rCp 

As for the second derivatives we have to distinguish two cases : 

U(Aim)*ff(Bkn)V=-s~o ~ ~ Z(-ABS)I/2r(-A B Sr ) V(Srm)*V(Srn)~(S' i k 

(11) 
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with A~ ~ B k, and 

V(Aim)*F(Ain) V= 

G. Fleck 

/ - A D S )  
Z Z(-ADS)I/2z( V(Srm)*V(Srn)~b(S, IS;I) 

s,o Dqr _ i q 
(12) 

In order to get compact formulae for the derivatives at the right-hand side we 
express them in spherical harmonics using the gradient formula (1.35) of [4]. We 
write 

(b(S, IS;l)= (4r0t/z(b(S, ls;I)(s;loo) 

and get for the first derivatives 

V(Srn)eb(S, 1S;1)=(4u/3)~/2 cb'(S, [S;])(S; ] ln), (13) 

where q~'(S, x)= dq~(S, x)/dx. The second derivatives are 

V(Srm)*V(Srn)c~(S, IS~I)/S~=Sr= 2 ~(L, S) M m (S~[LM) (14) 
L M  

with a(L, S )=  (4~/3)1/2(L II V(gr)[[ 1)4~'(S, S). For L + cf. Eq. (58)ofII. Because we 
use the spherical harmonics in the phase convention (r l lm) =il Y~m(O, ~0)we 
repeat the reduced matrix element: 

1/2 [1 d l(l+l)-L(L4-1)_ 
(LJ[PJpl)=[5(L, ]+ l)L1/a +•(L, I- l )]  ] .[r~rrr-~ 

_1 

According to the selection rules there are two functions : 

o-(0, S) = (4zc/3)1/2[rb"(S, S) + 2q)'(S, S)/S] 
(15) 

G(2, s)=(s~/3)i/2[~"(s, s)-4)'(s, s)/s~ 

We mention that a(0, S) vanishes for Coulomb potentials (Sr We now can 
substitute (11), (12) and (14) into (7). For the force constants between inequivalent 
set A r B we only need (11) and (14) : 

F(e, 7 A ~ ,  7'B~'~'~')= - Z a(L, S) Z Z M(TeP, Ai~,  (~)lm)* 
L S  4 :0  imk  nr M 

�9 M(7%p, Bkc~'cc', (~')ln)Z(-ABS)X/Zz k r m (Sr]LM) 

The second sum is in exact accordance with Eq. (12) of III and we can express 
the force constants in close analogy with Eq. (11) of III by a "physical factor" 
a(L, S), i.e. the derivatives of the potentials, and a geometrical one : 

F(c, 7A~a~, 7'Bc(c~'~')=- ~ or(L, S).G(Ac~z~I~, B~'c~'l~', 77'c, L, S) (16) 
L S ~ O  

Because the geometrical factor can be evaluated via Eq. (15) of III, we have solved 
our problem in this case. Of course the factors can be taken over if LCAO calcu- 
lations involving p-orbitals already have been worked out. We shall profit by this 
in our example. 
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In the case of  force constants within an equivalent set A we get two sums, one for 
i C k  and one for i=k.  Using (11) and (12) we derive from (7): 

S :/= O irmn 

f �9 - M ( 7 ' e p ,  Ak~'c~', (# ' ) ln)Z(-AAS)~/2z " k 

(;o:)] 
! i t ! + ~ M( 7 ,p, A ~ a. , ( { ' ) ln)Z(-ADS)I /2z  /s;=s, 

Dq q 

Inserting (14) again we get two terms, the first of which has the same structure as 
(16) and the second one leading to a second geometrical factor" 

t t '~ ; t a(L, S)[ -G(Ac~zl& Ae'c~ 1{ , 2' 7 e, L, S) 
LSr 

+H(Aecslb, A~'~ ' I~ ' ,  77'c, L, S)] (17) 

The second factor is defined by 

H(Acz~ld, A~ %z'ld', 77'c, L, S) 

= ~ ~ M(Tcp, Aic~, ({)lm)*M(7'cp, Aic~'~', (d')ln) 
irmn DqM 

(18) 

and is evaluated in analogy to the G factor. As in this case we start with Eq. (7) of  III, 
express the 3jm-symbol in the s.a. basis as in Eq. (13) of III and insert this into 
(18). Now there are three V-coefficients, which again are collected in a Racah- 
and one V-coefficient. We then have: 

H(A~zi~, A~'ct'l~', "" ' '/'/c, L, S) 

Y, Z w 
,tnn'irDq #d.'; \ #  d +  { +  ~ d '  eyy'~t 

(: ":) ( : )  .V,1 d + a  , - D S  ' n' ( A ~ n  I Ai)(A~ I Ac(~z 'n ' ) (S~lL#ds)Z(--AOS)l /2z  " q r 

In difference to the G factor in III we now have the product of two standard 
functions of  A i. According to Eq. (43) of  II this can be expressed by a sum of 
standard functions. With the convention, Eq. (9) of II we get: 

(Ac~a,n ] Ai)(A ~ ] A~'c~'n')=-(A i l Ac~%/n')(A~ I A ~ + n )  

= ~o/p2 ee(A, qoPf~'ct'lfc~+)Ve n ' n  ] 

(Ai I Aq)/p) 
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The sum over V, and Va can be evaluated immediately. In addition we expand 
(S~[Lgds) in standard functions as in Eq. (12) of II: 

H(A~I& Ac~'~'ld', 7T 'c, L, S) 

=Oy(~#c+) ~ ~7 ~ Is~( L+ 1+ ~) (de+ z~'+ c~) 
irOq 6q~tlr, \ ~  d+  ~+ ~V d dt eT?'. 

�9 P.(A, cod + I1 c~'c~'H c~a~+)(A~IAcod +s)e(Sbd, Ll~) 

Finally the two standard functions and the z matrix form. a special polyhedral 
isoscalar, cf. Eq. (42) of II: 

H(Ae~ld, A~%'lg', ~7'c, L, S) 

=0~(aZc+) Z Z Is~ g+ d'/ \c ~ g' 
e6U q~dD. ri d+ 

~'"  (19) 

, ,  H ~ + )PIsk, COd+[['-- A ~D 3 ~/S)c(Sbd' LIz)[Z(D)Z(-ADS)/dim d]I/2 

The essential sums are d and D, the rest being due to multiplicities. Thus the 
structural coefficients defined in II, PIs, P and c, suffice to calculate all the geo- 
metrical factors in (17). In the following sections we work out some further 
consequences. But first we must come back to the tacitly presupposed equilibrium. 

4. The Equilibrium Condition 

The general equilibrium condition is : 

V(Akn) V/aa,=o=O (20) 

The insertion of (10) and (13) yields: 

~ Z(-CAS)I/2z(-C;S)~'(S,  S)(S~ I ln) 
S~O rCp 

Now follow the manipulations: Transformation of (Sr[ In) into the s.a. form 
(Sr[ l~t) and expansion of the latter in standard functions according to Eq. (12) 
of II, multiplication by (Ak I Ac~s) and summation over k. This yields: 

~, Z Z Z( -  CAS)I/zz ( -  CAS'~ (A k ] Ac~s)(Sr ] Sfldt)c(Sfl~, 1)4~'(S, S ) = 0  
S~OrCp ~k \ pkr J 

Because the sum over p is invariant under the symmetry transformations the 
equation is trivially zero for ~ r # +. So we consider ~ = d +. From Eq. (42) of II 
follows the special case: 

PIs =6(z~, a+)[Z(S)dim a]-  ,/2 ~ z 
~z~ fi~ i k pikl 

(Ak I Ac~+p)(SI[Sfi@) 
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where o again means the totally symmetric representation. Inserting this we finally 
get the equilibrium conditions in the invariant form: 

~ ~,[Z(C)Z(-CAS)]I/2pIs( - C A  S) c(Sfl& I)cI)'(S,S)=O (21) 
s,o cp c~+ fi~ 

(21) implies a condition for every set A and for each representation & which is 
simultaneously contained in a A, ~s and ~1(0(3)). We shortly discuss the example 
C(CH3) 4. There are two independent shape parameters, the radii of the C and the 
H spheres. The only possible representation is ~ = T 2, which is contained in o -c 
and all. Thus there are two Eqs. (21), the set A representing either the C atoms or 
the H atoms. 

In general the different potentials r S) will compensate each other at the 
equilibrium, which implies inner stresses in the molecular framework. If this is 
not the case, all potentials take on their minima simultaneously: 

�9 '(S, S) =0 

This assumption halves the number of independent parameters in (15) and 
produces additional connections between the force constants. 

5. Special Cases and Sum Rules 

We discuss the special case of one of the equivalent sets containing the central 
atom only, B= O. (16) then becomes 

F(b', 7Ac~{, 0~ ' )= - ~ a(L, A)G(Ac~c~I~, OM{', yl#', L, A) (22) 
L 

where the special G factor is given by Eq. (16) of III. 

For the diagonal elements with A = B =  O we must specialize (17). As (15) shows 
the factor G vanishes in this case for S r  and we only get terms with H factors: 

F(& O J ,  Ood')--6(& ~')~, a(L, S)H(O~I#, Oel#, llg., L, S) (23) 
LS 

where the special factor is: 

H(O~I~, 0~1~, ll& L, S)= [Z(S)/dim ~]1/2 ~ Is c(So, Lg) (24) 
7 

To get (24) one needs Eqs. (45) and (46) of II. Because L has only the values 0 and 
2 in the expressions (16) and (17), it will be helpful to explicate the simple geo- 
metric factors for L = 0: 

G(Ac~I& Bc~'~'l~', 77'c, 0, 5)= ~(~, ~')6(~, ~')c~(7, 7 ')[Z(-ASB)/dim 6] 1/2 

,B (Z(S)/4~z)I/2 
,oO~zrb/ 

H(Acr Acr ', 77%, O, S) 
=~(~, ~')~(~, ~')6(& #')6(7, )")Z(-ADS)(&z)-1/2 
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where we used Eq. (46) of II and the special case: 

PIs ( -  ADS] = [Z( - ADS)/Z( A)Z( D)Z( S) ] l/2 (25) 
\ ~ / 

As in III we can set up several sum rules for the diagonal elements of (17). In 
simple cases as for instance P4 or if the non-diagonal elements can be neglected, 
these sum rules apply immediately to the quadrates of the normal vibration 
frequencies. One has to calculate the analogues of Eqs. (20-22) of III for the 
factor H. The analogue of Eq. (21) of Ill is 

2 dim ~-H(Ac~aAd, A~a, ld, L, S):3(L, O)(3/4rc)t/2Z(- ADS)dim z~/Z(A) 

(26) 

we suppose Z(-ADS)=O, if --ADS is no triangle. This yields the sum where 
rule: 

Z dim c-F(c, yAc~z~d, 7Ac~d)= - Z [~b'( S, S)+ 2q~'(S, S)/S-] 
&~ s~ 0 (27) 

. [ (Z(-  ASA)Z( S)dim a)l/2PIs(~? Sz~ ~:c~A) - Z ( -  ADS)dim a]Z(A)] 

and with further summation simply: 

Z Z dim c. F(e, olAc~c~d, 7Ac~ed) = Z E~b"( S, S) + 2q)'(S, S)/S]Z( - ADS) 
~,~ ,~ s ,  0 (28) 

We again remark that the right side vanishes for purely Coulombic interaction. 
In this case the matrix of the force constants would not be positively definite. 

6. Parametrization 

If it is possible to determine all the invariant force constants by experiment one 
can regard ~b'(S, S) and ~b'(S, S) as fitting parameters. For this purpose one needs 
the inversion of(16) and (17). One again uses the orthogonality relation (24) of III. 
We derive from (16) 

~(L, S)-- -(4rc/Z(-ASB)) ~ ~ dim c 

�9 G(Ao:~ld, Bo:'~'ld' 77'~, L, S)* .F(c, 7Ao~d, 7'Bc(c~'d'), (29) 

which gives the parameters a(L, S) for the edge vectors S connecting different 
sets A and B. For the parameters within one equivalent set we have to invert (17). 
The second term in (17) makes no trouble, because we fortunately have the following 
orthogonality of the factors G and H: 

2 2 dim c 

�9 G(Ac~z~I& Ao:'~'ld', y7%, L, S)H(A~a,I& Ac(z~'ld', 77'c, L, S) 

= 6(L, L')3(L, 0)3(S, 0)[4~Z(-  ADS)I- ~ (30) 
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Therefore (29) is the inversion of (17) too (with A = B, S r  0), and we can calculate 
all free parameters from the force constants. In order to prove (30) one uses the 
orthogonality relations of the W coefficients and isoscalars as in the case of 
Eq. (24) of III. The essential point then is the relation 

(31) 

from which (30) follows immediately. 

7. The Elimination of  Translation and Rotation 

Since we have started with the Cartesian coordinates of all atoms, the symmetry- 
invariant force-constant-matrix contains still the two zero-frequency eigenvalues 
of the translation and rotation of the whole molecule. In order to reduce the rank 
of the matrix it may be desirable to eliminate them. This is done by the conditions 
introduced by Eckart [5] : 

m(A). AA i = 0 (32) 
Ai 

m(A). A i x AAi=O (33) 
Ai 

where re(A) is the mass of one atom of set A. By inversion of (4) and insertion into 
(32) we get: 

re(A) ~ ~ ~l(?'cp, Aic~, ({)lm).Q(yep, AcutE)=0 
Ai O~d 7ep 

We first evaluate the sum over i. Because of 

Z (Ai{Ac~q)=6(c~, 1)6(~, ~)6(q, O)Z(A) 1/2 

we get: 

Z M(TcP, Aic~c~, (#)lm)=6(~, 1)6(~, ~)b(d, e)c~(7, 1)Z(A)X/2(lm I lop) 
i 

and therefore : 

Z m(A).Q(lep, Aloe)Z(A)l/2(lcpl l m ) = 0  
A c p  

By summation with ( l m  I l#r) the first condition yields: 

m(A)Z(A) ~/2Q(l#r, A 1 J )  = 0 (34) 
A 

In order to evaluate (33) we have to express the vector product by Clebsch-Gordan 
coefficients or 3jm-symbols, cf. formulae (5.1.5), (5.1.8) and (3.7.3) of [6]: 

(A, • AA~)p= i. 2 ~/z ~ Ai,AAim( lnlm [lp) 
nm 
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We insert this into (33), write Ai,=(47z/3)~/2A(A~I ln), and express AAim again 
by (4). This yields except for an irrelevant factor: 

m(A).A(A~ [ ln) ~ M(Teq, Aic~, (g)lm) 
Ainm m p ~ z ~  y~q 

�9 Q(ycq, A ~ )  = 0 

We convert the [In} basis into the s.a. one, I ldr)  etc., express the 3ira-symbol by 
an isoscalar and use Eq. (7) of III. Thus the condition becomes: 

Z ~, 2 rn(A)A(Ai ldr)Is~ d+~+/ ,  ] ~\r s 
A i ~  ycq drs/t~ 

(1/ t  lp)dim e 1/2 Y[ksq ) (Aez~klAi)Q(Teq' A e ~ ) = 0  

With (II. 13) and the orthogonality of the coefficients V we get 

\/1+ 1 + : )  
2 2 m(A)A.e(Ac~z~, 1)Is,[ +#+ (lcql lp)Q(ycq, Ac~d).dim c-~/2=0 

A ~  ~cq 

and finally by summation with ( lp  I l d r ) :  

2 ~m(A).A.c(Ac~, 1).Is, z+~ + .Q(ydr, Ac~z~)=0 (35) 
Aaa~ y 

This is a condition for those symmetry coordinates for which ~ and g are con- 
tained in the representation ~- (0(3) ) ,  d in ~ +(0(3)) and of course d in ~ x d. 

One can take account of the conditions (34) and (35) by forming linear combina- 
tions of the coordinates involved, which are orthogonal to (34) or (35) as is done 
in [7]. As an example we point to the Eqs. (39) and (40) below�9 An alternative 
procedure is to use (34) and (35) for the elimination of one of the involved symmetry 
coordinates and the related velocity from the energy function�9 

8. Example 

As an example we study the vibrations of AB 4 type molecules or complexes. In 
accordance with the notations of the example in Ill we designate the positions of 
the four ligands by R~, the central atom by O, and the distance vectors between the 
ligand atom by Sik=Ri-Rk. Since the elongation vectors AAi (i.e. AR i and 
A O in our example) belong to the symmetry species T z like the p-orbitals, they 
induce the representations 

TzXaR =T2x(AI + Tz)=A~ +E+ Tx + T2 

and 

Tz X cr~ = Tz x A l = T2. 

The geometric factors G for the R-sphere have been listed up in Table 5 of III, those 
for the O-R interaction in the subsequent discussion. 
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For the calculation of the factors H according to (19) we have to add to the poly- 
hedral isoscalars already included in III the factors P defined by Eq. (44) of II. 
These are: 

P(R, AilIAtlIAt)= 1/2, P(R, Atl I T 2 II Tz)= x/3/2, P(R, T~II T211T2)= -,,//3/2 

Since the polyhedral isoscalars could be tested by Eq. (49) of II we mention an 
analogous formula for the factors P: 

~ P*(S, ~a[ll3#liTc)P~(S, c~l{/~llT'c)= a(7, 7')dim c (36) 
~ Bde 

Likewise condition (31) must be met. We then can list up the factors H calculated 
by (19). 

Table 1. Geometric factors H(A~ I d, A~ 1~, c, L, P).-,//4~ for the tetrahedral positions 
R~ and center O 

A~I~, AM{, e 

(L, P )=  

(0, s) (2, 53 (0, R) (2, R) 

RAil72, RAllT2, T 2 ~ 0 1/.,75 0 

RT21T 2, RT21T 2, E ~ -x~_/4 1/x~_ - - -1/~_ 
erAr~, er~Jr~, T, .75 -5,/~/4 ~/(j~_ -1/5,7~_ 

OA~ 1 T 2, OA~ 1 T 2, T z 4/ , /3  0 

We again mention a control formula: 

2 2 dim c. IH(Ac~a,l& A~%'l~', 77'c, L, S)I 2 

Since the symmetry species Al, E, T t occur only once, we can write down their 
force constants immediately: 

Ft A . RT2 T2, EI1/(5+,jS)G(0, S) + I S/T6 + T6/2)G( 2, S) 
+ (1/x/3)cr(0, R) + (2/~)c7(2, R)] 

= 44~"(S, 5) + 43"(R, R) 

In the same way we get: 

F(E, RT2T 2, RT2T2)=qY'(S, S)+ 3~'(S, 5)/S + q)'(R, R)/R 

F(T~, RT2T2, RT2T2)=4q,'(S, S)/S + 4)'(R, R)/R 

Since T 1 is the symmetry species of the rotation according to (35) and 
~ l  +(0(3)) --~ TI(Ta), this force constant should be zero. In order to verify this we 
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have to take into account the equilibrium condition (21), which reads in our case: 

[Z(O)Z(OR- R)]I/aPIs(OAt R T2 -R2)c(RT2,  1)r R)-i-[Z(R)Z(- RRS)] t/2 

( R - R R  S 
[PIs A 1 T2 

J 

Inserting the coefficients from III we get: 

R)+vZdr S)=0 
With regard to the geometric relation S= x / ~ "  R this yields : 

F(T1, RT2T2, RT2T2)= R)]/R=O 
With respect to the symmetry species T 2 we have three coordinates Q(T2p, OA ~ T2), 
Q(T2p, RAFT2) and Q(T2p , RT2T2). The matrix elements of the force constants 
of this species are: 

F(T 2, RT2T 2, RT2T2)=2ct)"(S , S) + 24~'(S, S)/S+(2/3)~"(R, R) 
+ R)/R 

F(T 2, RA ~ T 2, RA1Tz)=(1/3)[eP"( R, R)+ 2(b'(R, R)/R] 

F(T 2, O A t r  2, OAtT2)=(4/3)[vP"(R, R)+ 24~'(R, R)/R] 
(3s) 

F( T 2, R T2 T 2, RA t T2)--- (x/2/3 )[ qS" ( R , R) - cb '( R, R)/ R] 

F(T 2, OA~ r2, RAt  T 2) = - (2/3)[4~"(R, R) + 24)'(R, R)/R] 

F(T 2, OA 1T 2, RTaT2) = - (x//8/3)[4~"(R, R) - cp '(R, R)/R] 

Because of T 2 being the species of the translation coordinate the matrix consisting 
of the elements (38) must have a zero eigenvalue. Indeed the transformation 

Q( rzp, ~)=5-~/2[2Q(Tzp, RA a Tz) + Q( Tzp , OA t T2) ] (39) 

Q( T2P, fl) = (4re(R) 2 + re(O) 2)- ~/2[m( O)Q( T2p, RA ~ 7'2) 

-2m(R)Q(Tzp, OAIT2) ] (40) 

leads to the intended result. (39) is the translation coordinate, which is no more 
coupled to the other two, and (40) fulfils the condition (34). Thus the real vibrations 
of species T 2 are linear combinations of Q(Tzp, fl) and Q(Tzp, RTzT2). 
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